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Abstract

Infrared cameras allow for the estimation of the tem-
perature of urban surfaces. A time sequence of ther-
mograms can be accurately simulated by computa-
tional techniques such as the finite element method
(FEM) for transient heat transfer. The main objec-
tive of this work was to improve FEM convective and
radiative boundary conditions, enabling a more pre-
cise analysis of an urban scene. The software Cast3m
was used for performing the simulations, and the re-
sults were compared to a set of thermograms taken in
the city of Bayonne through a clear-sky day. A street
composed of two blocks was selected for the study,
where the geometrical properties and boundary con-
ditions were carefully established. The conducted ex-
periments show that free internal air temperatures,
rather than fixed, increase the realism of the simula-
tion. Furthermore, the computational performance of
the model was improved by exploiting specific prop-
erties of urban geometries.

Introduction

The analysis of thermograms of urban perspective
views allows to obtain relevant information about the
thermal behavior of buildings (Beckers and Garcia-
Nevado (2018)). Heat transfer simulation engines
bring more information into the studies, because a
clean comparison between accurate simulations and
experimental results can reveal details about the oc-
cupants behavior and the thermal comfort of the ur-
ban scenario. The analysis of this spatialized infor-
mation can help in the redesign of city elements, and
even on the projection of future buildings. Neverthe-
less, the simulations need to be as accurate as possible
to perform a useful analysis.

The computational simulation of transient heat trans-
fer involves dealing with several boundary condi-
tions such as convection and radiation. Convection
happens at both the exterior environment and in-
terior spaces, having a significant effect on internal
air masses and urban surfaces temperatures. On the
other hand, radiation is emitted at different wave-
lengths by every surface with a temperature above

the absolute zero. It can be studied at two levels:
short wave radiation is emitted by the sun and re-
fracted by the sky before reaching the urban surface,
and long wave radiation is emitted and exchanged by
the urban materials and the sky.

Thermal studies of urban elements are usually ad-
dressed using simplified models like electric circuit
analogy methods, providing a balance between ac-
curacy and algorithmic performance (Asawa et al.
(2008); Kramer et al. (2012); Reinhart and Davila
(2016)). Nevertheless, the spatialized information
shown in thermograms is difficult to simulate with
these kind of methods due to the high level of de-
tail and granularity needed. Other computational
techniques for dealing with finer meshes are avail-
able, such as finite difference methods (FDM) or FEM
(Lewis et al. (2004)). These kind of methods are not
specifically designed for cities, thus adaptations must
be done (Lü (2002); Huttner and Bruse (2009); Idczak
et al. (2010)). A careful mix between these highly
accurate techniques and certain modeling simplifica-
tions can enable reliable studies to be tackled using
regular PCs in reasonable execution times.

In this work, a study was conducted for improv-
ing FEM boundary conditions at the urban scale
using the software Cast3m (Charras and Di Paola
(2011)). Two problems were tackled. In the first
place, a method inherited from previous electric anal-
ogy works (Fraisse et al. (2002); Nielsen (2005)) was
adapted to FEM to address the interaction between
the interior surfaces and internal air. Secondly, radia-
tion computations, which are the most expensive part
of the computations, were accelerated within Cast3m,
taking advantage of the low density factor (which
is the rate between non-zero elements and the total
number of elements) of the involved sparse form fac-
tors matrices (Aguerre et al. (2017)). These modifica-
tions were applied to simulate the test case presented
in Aguerre et al. (2018), where a real thermography
campaign was compared to FEM results. Higher ac-
curacy is observed with the proposed modifications.
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Methods

In this section, FEM for transient heat transfer is de-
scribed, and the two proposed modifications for im-
proving the computation of boundary conditions are
presented.

Transient heat transfer

The behavior of heat conduction can be expressed by
a differential equation that relies on the heat conser-
vation law to describe the transient heat flow:

k∆T = ρcp
∂T

∂t
(1)

In this equation, k (Wm−1K−1) is the thermal con-
ductivity of the material, considered constant along
the solid and isotropic (equal in all directions). ∆ is
the spatial temperature laplacian. ρ (kgm−3) and cp
(Jkg−1K−1) are the density and the specific heat of
the material, respectively. This differential equation
has second order terms, thus requires two boundary
conditions to be solved: Dirichlet (imposed tempera-
ture T = Tb on part of the boundary Γ) and Neumann
(imposed flux q = −k ∂T∂n , with n being the normal
vector of the boundary geometry). Other heat trans-
fer phenomena such as convection and radiation are
expressed as boundary conditions of the conduction
problem. Time t appears as a first order term in Eq.
1, hence an initial value is enough to solve the system.

The solution of the conduction equation in a three-
dimensional complex geometry is a challenging prob-
lem in many aspects. Computational methods re-
quire the discretization of the domain (space and
time), which implies the discretization of the equa-
tions. Two approaches are commonly used for this
purpose: FDM or FEM. In this study, FEM was used
as the main technique for treating the spatial domain
Π, because it allows to deal with complex geometries.
On the other hand, FDM was applied for the dis-
cretization of time (transient scheme).

FEM for spatial discretization of conduction

FEM provides a solution to partial differential equa-
tions through a system of algebraic equations with
a finite number of unknowns in the domain (Lewis
et al. (2004)). A set of elements with known shape
(2D: triangles, quadrilaterals, etc; 3D: tetrahedrons,
hexahedrons, etc) is defined, within which the tem-
perature variation is described by a polynomial of
first, second or higher order. Hence, the tempera-
ture can follow constant, linear, parabolic and other
behaviors. The functions that describe this interpo-
lation are the shape functions. For example, given
a two-dimensional quadrilateral, the temperature at
any point p inside the element can be expressed as:

T (p) = N1(p)T1 +N2(p)T2 +N3(p)T3 +N4(p)T4 (2)

where Ti is the temperature at node i and Ni the cor-
respondent shape function. By replacing the contin-
uous temperature field in Eq. 1 with its discretized

form, and minimizing the energy balance using the
Galerkin method, a system of equations is defined:

C
{∂T
∂t

}
+ K

{
T
}

=
{
f
}

(3)

In this equation, C is the capacitance matrix (diago-
nal matrix) and K is the conductivity matrix (sparse
matrix).

{
T
}

is the vector of unknowns, and
{

f
}

is

the load vector.
{
∂T
∂t

}
is the vector of temperature

derivatives over time, which is not yet discretized. Eq.
4 shows the value of each element of the matrices. Re-
maining derivatives and integrals are solved using a
combination of analytical and numerical methods.

Cij =

∫
Π

ρcpNjNidp, Kij =

∫
Π

k∇Nj∇Nidp{
f
}
i

= −
∫

Γq

Niqdp
(4)

FDM for time discretization

The time-temperature derivatives are discretized us-
ing a forward difference approach. Using Taylor se-
ries, a first order approximation of the derivatives is:

∂Tti
∂t
≈
Tti+1

− Tti
∆t

(5)

Assuming a linear variation of temperature inside a
short timestep length ∆t, it can be said that:

ft = θfti+1 + (1− θ)fti (6)

Replacing and rearranging Eqs. 5 and 6 in Eq. 3, the
following system is obtained:(

C + θ∆tK
){
Tti+1

}
=
(
C− (1− θ)∆tK

){
Tti
}

+

∆t
{
θfti+1

+ (1− θ)fti
}

(7)
The value θ = 1 was used in this study, corresponding
to an implicit scheme (unconditionally stable):(

C + ∆tK
){
Tti+1

}
= C

{
Tti
}

+ ∆t
{
fti+1

}
(8)

∆t and
{
fti+1

}
are imposed, while

{
Tti
}

is computed
in the previous step.

Convection

A pure FEM treatment of heat transfer does not allow
for the calculation of complex air movements within
the city. Computational fluid dynamics can be incor-
porated into the model, but these bring much harder
computational challenges and complicate the study.
In this work, convection was simplified with the use
of the heat transfer coefficient, commonly represented
by the letter h. This approximation works properly
when wind is not dominant in the system, i.e. a calm
day is being studied. The equation that represents
the heat flux by convection is presented in Eq. 9,
which is provided by Newton’s law of cooling.

qc = h(T − Tair) (9)

where Tair is the air temperature, and h is measured
in Wm−2K−1.
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Fixed air temperature. When Tair is input data
(for example if the air temperature was measured
in situ), then convection is treated as a Neumann
boundary condition. Two terms are added to the sys-
tem of Eq. 4:

Kconv
ij =

∫
Γc

hNjNidp ,
{
f
}conv
i

=

∫
Γc

NihTairdp

(10)
Free air temperature. When Tair is not known
(for example, if the internal air temperature was not
measured) it is possible to calculate the interaction
between the surface temperature of the boundary and
the air. In this way, Tair is a new variable in the
system, and an initial air temperature at t0 is enough
for computing it. Because Cast3m does not support
this variation, some coding must be implemented.

A first approach for addressing this problem is the
following. A new virtual node is added to the ge-
ometry, representing the air mass. All the boundary
nodes are connected to the virtual node, and the air-
surface interaction is modeled as a conduction prob-
lem within the FEM engine. The main advantage of
this approach is that, as long as other nonlinearities
(such as radiation) are not introduced, the problem
remains linear. However, the computational perfor-
mance for solving the system can be affected because
the density factor of K is increased, and its sparse
structure can change (Karimi et al. (2014)).

In this study, a different approach was implemented,
based on the techniques used in electric analogy sys-
tems (Reinhart and Davila (2016)). In contrast with
the method described in last paragraph, the surface-
air interaction can be uncoupled from the FEM en-
gine, and treated as part of the discretization of time
with FDM. An iterative solver was used for solving
the system of equations at each timestep.

Let us study this interaction for the case of an air
mass enclosed in a room with a varying surface tem-
perature. It is important to define the notion of the
time constant τ , which is the parameter characteriz-
ing the response to a step input of a first-order, linear
time-invariant system. The inverse of this constant
(s−1) is:

1

τ
=

hS

ρcpV
(11)

where ρ and cp are the density and specific heat of air,
V is the volume of the air (m3) and S is the surface
in contact with the air (m2).

Given an initial air temperature and the current inter-
nal surface temperatures, the goal is to compute the
new air temperature and a new surface temperature.
Using Newton’s law of cooling, with the assumption
that all the internal surfaces have the same h coeffi-
cient, the next differential equation is obtained:

dTair(t)

dt
= −1

τ

(
Tair(t)−TS(t)

)
, with a given Tair(0)

(12)

where TS(t) is the mean surface temperature at time
t. Because a FDM is being used, the evolution of
internal surface temperature follows a linear behavior
within the timestep of length ∆t:

TS(t) = (1− t/∆t)T prevS + (t/∆t)T curS (13)

where T prevS is the surface temperature of the previ-
ous timestep, and T curS is the current solution of the
iterative solver.

Joining Eqs. 12 and 13, a new differential equation is
obtained:

dTair
dt

= −1

τ
Tair(t)−

1

τ

(
T prevS − T curS

∆t

)
t+

1

τ
T prevS

(14)
This equation has an analytical solution, which sim-
plifies the computational effort. For each timestep,
the equation is solved multiple times in the itera-
tive solver, until reaching surface and air temperature
convergence. The extension of Eq. 14 for various dif-
ferent h coefficients (for instance for each wall, roof
and floor, totaling six surfaces) implies the following

re-definition of the time constant: 1
τ =

∑6
i=1

hiSi
ρcpV

.

Adding support for windows

Electric analogy systems allow for the simulation of
windows without increasing the geometrical complex-
ity of the model. In this study, a similar approach was
used for adding this features to the FEM system.

Windows have a dual effect on convective heat ex-
change. In the first place, ventilation and air filtra-
tions imply a direct exchange between external and
internal air. In the second, the low thermal inertia of
the thin glass present in windows causes a much faster
heat flow. Therefore, two components were added to
Eq. 12 to account for the effect of windows:

dTair
dt

= −1

τ

(
T (t)− TS(t)

)
−UVAV
ρcpV

(
Tair(t)− Text(t)

)
− HV

ρcpV

(
Tair(t)− Text(t)

)
(15)

In this equation, several terms are introduced.
UV is the thermal transmittance of the window
(Wm−2K−1). AV is the surface area of the window.
This term is related to the concept of window to wall
ratio, which is a measure of the total glazed area with
respect to the total envelope area. HV is the heat
transmission coefficient due to ventilation (WK−1):

HV =
ηρcpV

3600

where η is the air change rate (ACH, h−1). Finally,
Text is the external air temperature, which is a func-
tion of time and grows linearly between two timesteps
(in a similar way than Eq. 13):

Text(t) = (1− t/∆t)T (i−1)
ext + (t/∆t)T

(i)
ext (16)
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where T
(i−1)
ext and T

(i)
ext are the external air temper-

atures of the previous and current timestep, respec-
tively. For the sake of clarity, a new parameter is de-
fined, which is the inverse of the time constant with
respect to the effect of windows in the system:

1

τV
=
UVAV +HV

ρcpV
(17)

Joining Eqs. 15, 16, and 17, a new differential equa-
tion is obtained:

dTair
dt

+ aTair + bt− c = 0, with a given Tair(0)

where a = 1
τ + 1

τV

b =
1

τ

(
T prevS − T curS

∆t

)
+

1

τV

(
T

(i−1)
ext − T (i)

ext

∆t

)
c = 1

τ T
prev
S + 1

τV
T

(i−1)
ext

(18)
The analytical solution of this equation is:

Tair(t) =
c− bt
a

+
b− e−at(−Tair(0)a2 + ca+ b)

a2

(19)

Long wave radiation

Thermal studies of cities must address long wave ra-
diative exchange accurately because temperature dif-
ferences between the involved elements can be large.
In particular, low sky temperatures play a major
role in the urban cooling process (Morakinyo et al.
(2017)).

Assuming that all the surfaces are black bodies (their
emissivity value is 1), the radiative flux at a given
point on the boundary is expressed by:

qlw = σ(T 4 − T 4
r ) (20)

where Tr is the mean temperature of the environment
visible from the point, and σ is the Stefan-Boltzmann
constant (≈ 5.670373× 10−8Wm−2K−4).

With the presence of radiation, the FEM system be-
comes non-linear. The computational simulation of
radiative boundary conditions works in a similar way
than a convective flux, but adding an iterative scheme
to solve the non-linearity:

qlw = hrad(T − Tr), with hrad = σ(T̃ 2 + T 2
r )(T̃ + Tr)

(21)
where T is the temperature to be found, and T̃ is
result of the previous iteration. When the iterative
process converges, T = T̃ , and thus Eqs. 20 and
21 are the same. The most complicated stage of each
iteration is finding the mean visible environment tem-
perature Tr, which involves the use of form factors:

Tr = (Ei/σ)
1
4 , with Ei =

N∑
j=1

Fij(σT̃
4
j ) (22)

Because the city geometry is static throughout the
entire simulation, matrix F can be pre-computed and
stored. Following Aguerre et al. (2017), F can be
stored in sparse format to avoid excessive memory us-
age and to accelerate the sum in Eq. 21. This enables
refined geometries (composed of tens of thousands of
elements) to be processed in regular desktop PCs. In
this study, the density factor of the involved matrix
F were studied, and the results are presented in the
experimental section.

Short wave radiation

The low density factor of F was also exploited to
compute short wave radiation, which is the radiation
emitted by the sun and sky that reaches the surfaces
after a limited number of scene bounces. The assump-
tion of working with diffuse concrete materials allows
use of the radiosity method for computing irradiance
flux over the surfaces of the city. The following linear
system must be solved:

(I−RF)J = ξ (23)

where I is the identity matrix, R a diagonal matrix
of short wave reflectivity coefficients, J the radiosity
values and ξ the emission. The strategy described at
Aguerre et al. (2017) was used to compute climate-
based radiation with multiple reflections. After the
radiosity values J are computed for each element,
the absorbed radiation is inputted as an imposed flux
(Neumann boundary condition) in the right hand side
of Eq. 3.

Test case and model

The modifications proposed in this study were eval-
uated using the test case described in Aguerre et al.
(2018), which is summarized in this section.

A measurement campaign was carried out in Bay-
onne, France (43.48 No), in Rue des Tonneliers. A
set of thermograms were taken on April 23rd 2017
using an infrared FLIR B200 camera. The idea was
to maximize the amount of physical information con-
tained in the pictures, thus the street was captured
in perspective (Figure 1). The test case used a sim-
plified geometry composed of four boxes that repre-
sent the set of buildings captured in the thermograms.
The thickness of walls and roofs was 0.18m. Material
properties used are presented in Figure 2.

Regarding environmental conditions, several param-
eters were experimentally measured, whereas others
were modeled or estimated. A clear sky day was se-
lected for the imaging campaign. Very low wind val-
ues were measured in situ, allowing for the estimation
of a proper value for the external h coefficient, which
was set to 10 Wm−2K−1. The interior h coefficients
were extracted from the French thermal regulation
(CSTB (2012)): 0.7 for the ground, 2.5 for vertical
walls, and 5 for the roof (values in Wm−2K−1). Out-
side air temperature (see Figure 5) and relative hu-
midity were measured in situ.
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Figure 1: Camera location and model description of
the test case. The square and dashed lines indicate
the position of the thermal camera and the perspective
angle. S1, S2 and N1 are points selected for the study.

Figure 2: Material properties of the test case. Ex-
tracted from Aguerre et al. (2018).

Global horizontal irradiance was measured in a
weather station located 3.4 km away from the exper-
iments location. Using this data, direct and diffuse
irradiances were modeled using Liu-Jordan clear sky
model Liu and Jordan (1960). Perez All-weather sky
model (Perez et al. (1993)) was used to compute short
wave irradiances, using a sky dome geometry divided
into 2400 elements (Beckers and Beckers (2014)).

Infrared horizontal irradiance and sky temperatures
were modeled using Angström formula (Ångström
(1915)). Sky emissivity and directional temperatures
were modeled based on the work described by Nahon
(2017). A sky dome geometry discretized into 130 el-
ements was used for computing long wave radiation.

Data was extracted from Meteonorm (Remund et al.
(2010)) global meteorological database to estimate
the ground temperature at 1m deep (11.1 oC), value
that can be considered constant for a day period.

The internal air temperature of buildings was pro-
posed to be fixed at 20oC, which was highlighted as
a questionable supposition by the authors. This as-

sumption was changed in the study presented in this
paper, where these temperatures were also simulated
using the method described above. Results can be
observed in the next section.

The implementation of this test case in a FEM engine
like Cast3m requires meshing the geometry to obtain
a discretized version of the problem. The geometry
was meshed using hexahedrons of linear shape func-
tions, with four layers of elements along the thickness
of each wall. The boundary elements are quadrilat-
erals of area 1.5m x 1.5m (see Figure 3). The total
model is composed of four boxes, street, ground, and
sky dome for long wave radiation. The number of vol-
ume elements is 113580, and the number of boundary
elements is 28395.

Figure 3: Mesh representing the environment of Rue
des Tonneliers, used for the FEM simulation.

Because the series of thermograms were taken dur-
ing one day, the aim of this study was to simulate 24
hours. Accurate simulation results depend highly on
initialization conditions. A strategy commonly used
in electric analogy systems was adopted: the simu-
lated period was repeated several times. The results
for the first day differ considerably from the second,
but they converged for the third day. Hence, a three
day repetition was enough to obtain the initial tem-
peratures of the surfaces. The results presented in
the next section correspond to the third day of simu-
lation.

Results and discussion

Table 1 shows the thermography campaign and the
correspondent simulated results. Temperature pat-
terns are similar in both experimental and simulated
images. Higher accuracy is reached for the wall that
receives direct sunlight through most of the day. In
the other wall, as well as in the street, temperatures
are overestimated due to lower short wave radiation
values, which can be explained by the geometrical
simplifications (flat roofs, no overhangs, etc) . It is
important to highlight that the red parts observed at
16:00 in the thermograms correspond to wooden car-
pentry and joinery, elements that are not present in
the simulation.

The simulation with free internal air temperature is
more accurate than the one with fixed air at 20oC.
Because the difference between both set of images is
not easy to appreciate, an image showing the abso-
lute difference (from 0oC to 1.5oC) is presented. The
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ST Experimental campaign Fixed 20oC ACH=3 Difference
07

:0
0

10
:0

0
13

:0
0

16
:0

0
19

:0
0

21
:0

0

Table 1: Time-lapse (in solar time ST) of the photographs, thermograms, and corresponding simulated results
for fixed and free internal air temperature. Column 5 corresponds to the absolute difference between the two
simulated thermograms in columns 3 and 4.
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Figure 4: Comparison between simulated and measured temperatures at the selected points.

impact of the internal air temperature on the sur-
face temperature of the walls is greater than on the
street, due to conduction along the thickness of walls.
To enable a better evaluation of the results, three
points were selected in the geometry (see Figure 2).
The evolution of the experimental apparent surface
temperature was obtained by selecting pixels on the
thermograms and matching their color with the re-
spective temperature. These results are presented in
Figure 4, along with the correspondent simulations.
The results with ACH=3 are closer to the experimen-
tal data than those with fixed air temperature.

The modifications of FEM implemented in this study
allow for the estimation of internal air temperature.
Figure 5 shows the evolution of the internal air tem-
perature using different configurations of ACH, along
with the external air temperature. The three plots
correspond to the internal results of one of the stud-
ied blocks. The results showed no significant dif-
ferences for the rest of the blocks. Thermal inertia
of air is observed, where the minimum of the three
curves is always hotter than the minimum external
temperature. An analogous behavior is shown for the
maximum temperature. Larger ACH values implied
a greater similarity between the evolution of internal
and external temperatures.
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Figure 5: Evolution of external and internal air tem-
peratures using different air change rates.

The results shown in Figure 5 explain the differences
observed in column 5 of Table 1. An internal air tem-
perature fixed at 20oC was far away from the com-

puted one, where the maximum gap with ACH=3 is
observed around 05:00 (≈ 9oC). Due to the thermal
inertia of the wall, this difference takes some time
to be reflected on the outside surface temperature,
which reached its maximum difference around 10:00.

Computational performance

The simulations presented in this study were executed
on a standard desktop PC (core i7 processor and
16GB of RAM memory). The code implemented for
the computation of internal air temperatures did not
affect the computational performance of the model,
because an iterative solver was already being used to
account for the non-linearities associated with radi-
ation. The number of iterations needed to converge
in each timestep is the same with fixed and varying
internal air temperatures.

The memory consumption of Cast3m depends highly
on the size of the geometry (number of elements). In
particular, matrix F from Eq. 23 is a square matrix of
dimensions ≈ 23k × 23k. Using full matrix represen-
tations, which is the current Cast3m implementation,
the memory requirement to store F was ≈ 4GB. Be-
cause of the geometrical properties of the scene, the
density factor of F is equal to 4.16%, which justified
the use of sparse representations. The memory con-
sumption was reduced to 331MB, and the radiation
step was considerably accelerated. Table 2 shows re-
sults for the entire FEM model.

Execution time Max. memory
Version (minutes) consumption (GB)

Original Cast3m 572 4.6
Sparse matrix 61 0.9

Table 2: Execution time and memory usage details.

Around 9× speedup was reached in total execution
times. The memory consumption was reduced by a
factor of 5.1.

Sparse form factors matrices enable dealing with
larger geometries, which can be an important results
for future simulations. For example, the size of the
geometry can easily scale to hundreds of thousands
elements if a higher level of detail is modeled, and/or
if a larger zone wants to simulated.
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Conclusion
In this study, a set of thermograms were simulated us-
ing FEM, and the results were compared to an exper-
imental thermography campaign. The computational
techniques used were presented, and two improve-
ments regarding convective and radiative boundary
conditions were implemented in Cast3m.

The results showed that a simplified geometry can
generate accurate results if the computational model
is highly precise. In particular, using free internal air
temperatures increased the realism of the simulation,
reaching accurate results when compared to experi-
mental data. In periods where occupants do not make
use of artificial temperature conditioners, measuring
the air temperature can also serve as trustful infor-
mation about thermal comfort.

Furthermore, the computational performance of the
algorithm was optimized by using sparse matrix rep-
resentations for storing form factors. The entire sim-
ulation was executed in a standard desktop PC in rea-
sonable times, enabling the simulation of much longer
periods of time.
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